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T H E R M O D Y N A M I C  C R I T E R I O N  F O R  P R E D I C T I N G  

T H E  B R I T T L E N E S S  AND P L A S T I C I T Y  OF M E T A L S  

S. D. Sha f ra i  and T. N. Ha t sev ich  1 UDC 531:539.214 

A brief comparative analysis of the various methods of evaluating the brittle fracture of metals 
is given. A plasticity index for metals is proposed and substantiated, and the relation describing 
its effect on the relative contraction at rupture is obtained. 

Among the scientific concepts of the fracture strength of a metallic crystal lattice that have been 
established to date, one can distinguish the following two basic trends: the mechanistic approach (the Born 
model) and the thermodynamic approach. 

In their fracture model, Born and Huang [1] assume that fracture occurs when the elastic or shear 
moduli of a tensile specimen vanish ~t the moment the strain energy reaches a limiting value. In this model, 
the temperature dependence of the strain modulus is of significance. In most cases, especially for "pure" 
metals, the strain modulus obeys the formula [2] 

E/Eo = 1 - (T/Tmelt) 2, (1) 

where E0 is the strain modulus at absolute zero, T is the temperature, and Tmelt is the melting point. 
However, there are considerable peaky deviations (toward decrease) from relation (1), especially for 

metals with impurity [2, 3]. In our opinion, in these cases there is a second-order phase transition in which 
the isothermal coefficient of cubic expansion (compression) of the material, and, hence, the strain modulus, 
undergo a discontinuity. As follows from the propositions of thermodynamics, second-order phase transfor- 
mations are accompanied by discontinuous changes in one or several physical quantities, for example, the 
specific heat, the temperature coefficient of cubic expansion, and the bulk modulus. 

Larionov and Semenov [3] established the abnormal behavior of the physical characteristics of steel 
alloys, in particular the temperature coefficient of cubic expansion, magnetic susceptibility, and electric 
resistance, near the temperature of tough-brittle fracture transition. This phenomenon is explained by 
replacement of the metallic bond by a covalent bond, which occurs with a decrease in temperature in a 
narrow region of tough-brittle fracture transition. Abrupt transitions from one dominant bond to another 
can be accompanied by softening of the metal due to a change in the forces of attraction between atoms in 
the crystal lattice. 

According to the mechanistic approach, fracture occurs when the elastic or shear moduli vanish either 
as a result of supply of mechanical energy or as a consequence of the second-order phase transition due to a 
temperature change. This indicates the necessity of developing the thermodynamic model of fracture. 

The increased attention to the development of thermodynamic models of fracture is due to the fact 
that  the specific work of deformation due to fracture has the same order of magnitude as the specific heat of 
melting of metals, and the fracture strain is comparable to the thermal expansion of the fracture region upon 
heating from the initial temperature to the melting point. Thus, Stepanov [4] gives a simple relation between 
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the specific work of fracture and the latent heat of melting for zinc and cadmium, which, in his opinion, may 
be universal for metals: 

p'W/L = 0.19 = const. 

Here W is the deformation work in fracture of 1 g of a metal, p is the density, and L is the specific latent 
heat of melting. 

In discussing the value of the effective surface energy for steel in the Griffith formula, which is 2 or 3 
orders of magnitude lower in brittle fracture than in tough fracture, Zener [5] put  forward an interesting idea. 
He explained this phenomenon by the fact that  with occurrence of rupture, shear becomes more and more 
adiabatic, and the associated local heating, which is enhanced as the specific heat decreases with decrease in 
temperature (below the Debye temperatures), lowers the fracture work. 

An analogy between mechanical failure and melting of metals after a t ta inment  of the critical energy 
density is drawn by Osipov [6] and in the more recent work of Ivanova and Terent 'ev [7]. An important  step 
in the development of the thermodynamic view on the fracture process were the papers of Zhil 'mo [8] and 
D. Sih [9]. Zhi'lmo [8] s tates  that  of the entire work required for fracture, it is necessary todis t inguish  only 
the work in an elementary volume located in a cross section that is critical from the viewpoint of fracture. 
The work on fracture of a certain microvolume is a characteristic constant quanti ty for a part icular  material. 
According to [8], for construct ion steels similar in chemical composition and strength properties to domestic 
construction low-carbon steels, this quantity, called the limiting deformation work, is 650-850 J / c m  3. 

The failure concept of Sih is based on the local (near the concentrator) and global (along the entire 
cross section of the member)  critical energy densities, i.e., on a two-parameter fracture criterion. In this case, 
the fraction of tough and brit t le fractures can be established from the ratio of the energy density of shape 
change (distortion) to the energy density of volume change (dilatation). 

Developing the ideas of Zhil'mo and Sih, Ivanova believes that the critical energy densities of distortion 
I4~d and dilatation Wc~ are Wed = L, where L is the latent heat of melting and Wc~ = H,  where H is the 
enthalpy of the metal heated from the initial tempera ture  to the melting point [7]. 

However, an essential contradiction in the failure model of Ivanova is the assumption that  brittle 
fracture is controlled by microshear after a t ta inment  of the critical shear stress %, which is related to the 
critical energy density of distortion by 

Wed = L = r  (2) 

In turn, tough, i.e., high-power-consuming fracture, is determined by microrupture after a t ta inment  of 
the critical normal stress ac, which is related to the critical energy density of volume change by 

Wc~ = g = a2/(2E). (3) 

Comparing the left and right sides of expressions (2) and (3), Ivanova obtained the quant i ty  A, which 
she called the universal fracture constant: 

rc/a~ = A ~ = v /LG/ (HE) .  (4) 

In expression (4) for the majority of metals, G / E  .~ 0.35-0.40 and L / H  .~ 0.4. Therefore, the values 

of the universal fracture constant are within A ~ 0.12-0.16. It should be noted that  the criterion A does 
not reflect the tendency of metals to brittle or tough fracture and the plastic metal workability (change in 
shape). Thus, according to the results of [7], the values of A for ductile materials such as pure aluminum and 
gold are markedly different and are equal to 0.225 and 0.153, respectively. At the same time, for brittle and 
hard-to-work beryllium, A = 0.18, which is larger than that  for gold, iron, nickel, and other ductile metals. 
The moment  of transit ion from tough to friable fracture is determined by the condition of equal intensities 

of tangential and normal stresses in local volumes of the metal: 

  v/h7 : (5) 
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Condition (5) and expression (4) allow one to define the physical meaning of the universal constant as 
the ratio of the fractions of a metal failed by normal and tangential stresses. 

The condition of transition from tough to brittle fracture is determined from the relation 

Wed = W ~  = L. (6) 

In our opinion, conditions (5) and (6) do not have sufficient theoretical grounding. This follows from an 
analysis of the limiting strain energy densities in fracture and fracture stresses. Thus, for steels, irrespective 
of their chemical composition, the latent heat of melting is equal to 2120 J/cm 3, and the enthalpy for heating 
of steels from room temperature to the melting point is 8380 J / cm 3. At the same time, the volume density of 
strain energy at the moment of fracture has the same numerical values as the fracture stress Vrfr. This follows 
from the equation for the limiting value of the specific energy consumption We of the process of deformation 
and fracture of the crystal lattice, in which stresses are related to displacements of atoms by the welt-known 

sinusoidal law 
d 

Wc = ac sin ~ -  d ~ ac, (7) 

0 

where ac is the maximum strength of the crystal and d is the atomic lattice period. 
For the majority of constructional steels, afr = 650-850 MPa, which is close to the above limiting 

energy density 650-850 J/cm 3. From relations (6) and (7), the theoretical limiting stresses in steels should be 
numerically comparable to the latent heat of melting and approximately equal to 2120 MPa. This, however, 
does not agree with the theoretical strength of steels (O'theo r = 13,000 MPa). The more so as for many 
constructional steels, for example, ShKhl5 and ShKhl5SG, aft > 2120 MPa. In addition, there is also 
a considerable difference between the theoretical rupture strengths of steel determined from the enthalpy 
(8380 MPa) and using the Frenkel procedure (aft -- E/IO = 21,000 MPa). 

More accurate calculations of the theoretical strength and limiting strain energy density for fracture 
of metals are given by Fedorov [10]. Developing the thermodynamic model of fracture, he assumed that the 
specific volumetric internal energy absorbed by a metal at the moment of fracture can be written as the sum 
of the enthalpy of a metal heated from absolute zero to the melting point and the latent heat of melting: 

Tmelt 

/ W =  CpdT + .--~- L. 

o 

Here C v is the specific isobaric heat, Vfr is the volume of the failed metal, and V is the entire volume of the 
metal. Depending on the structure of the metal and deformation and fracture conditions, the value of Vfr/V 
varies from 0 to 1. The maximum fracture energy density is thus 10,500 J /cm 3, and the theoretical strength 
is 10,500 MPa, which is close to the true value. 

We hold to the idea that the processes of melting, limiting thermal expansion, and mechanical failure 
of metals are energetically equivalent. In this connection, we propose a model of brittle and tough fracture 
that assumes, as the models of Sih and Ivanova, that the hazard of brittle fracture depends on the physical 
properties of materials and on the accumulated energies of shape and volume changes in structural members. 
These energies have two different critical values. If the critical dilatation energy in a microvolume of a 
material is reached earlier than the critical distortion energy, fracture is mainly brittle; otherwise, it is tough. 

These conditions can be written as 

Wv = Wve, Wd < Wdc for brittle failure; 
(s) 

Wv < Wve, Wd = Wd~ for tough fracture, 

where Wv and Wd are the specific energies of dilatation and distortion. In the elastic region of the work of 
the material, the components of the total strain energy density are given by 
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Wv = (1 - 2#)/(6E)(0-: + 0-2 + 0-3) 2 for dilatation; (9) 

Wd = (1 + #)/(6E)[(0-1 - 0-2) 2 + (0-2 - 0-3)2(0-1 - O"3) 2] for distortion, (10) 

where az, 6,2, and or3 are the principal stresses. 
In contrast  to the well-known models, we assume that the critical dilatation energy is equal to the 

energy required to increase the elementary volume of the material to a limiting value in rupture. This energ-y 

is the sum of the energy of thermal expansion Uther m from the initial tempera ture  T to the melting point 
Tmelt  and the latent heat energy of melting L with the increase in volume due to first-order phase transition. 
Thus, 

Taci t  
t *  

Wvc= / a K d T + L ,  (11) 
d 

T 

where a is the cubic-expansion coefficient and K = E/(3(1 - 2#)) is the bulk strain modulus. 
In turn,  the critical distortion energy is equal to the enthalpy for heating of an elementary volume 

from the initial temperature to the melting point, i.e., 

Tmelt 
D 

= H = / CvpdT, (12) 

T 

where Cv is the specific isochoric heat and p is the density of the material. 
In fracture, the increase in volume is accompanied by cooling of the material while its plastic defor- 

mation is accompanied by heating. According to our experimental data,  the total change in temperature for 
steel specimens in fracture does not exceed 10-100~ In constructional steels, it is also necessary to allow for 
the energy components  that  arise because of structural imperfections. Thus, the presence of edge dislocations 
in the metal  structure leads to an increase in the dilatation energy in comparison to the distortion energy, 
and, in contrast ,  screw dislocations change this ratio in favor of the distortion energy. 

Representing conditions (8) in generalized form, we obtain from them the plasticity index for the 
material/3e, which, with allowance for (9) and (10), is written as 

CWaW, c 2C(1 + #)(1 - 3D)(L + U~) 
13e = WvWdc (1 - 2/~)H ' (13) 

where C is a factor that  takes into account the effect of defects in the metal s t ructure  and D = I2/I  2 is the 
ratio of the second invariant to the square of the first invariant. The  value of the coefficient/3e predicts the 
type of fracture of the material. Thus, for fie > 1, the fracture is tough and for fie < 1, it is brittle. 

Using the reference data of [11] and formulas (11) and (12), we determined the values of W.c and Wdc 
for 32 metals, which are required to calculate the plasticity index. Calculation of the plasticity index involves 
certain difficulties due to the specification of the type of stress state at the moment of fracture of a cylindrical 
specimen since the ratio of the distortion energy to the dilatation energy depends on the type of stress state. 
Prior to fracture,  a neck or a "soft interlayer," depending on the magnitude of transverse contraction, are 
known to form (see, for example, [12, 13]) in cylindrical specimens. In both the neck and "soft interlayer," a 
volumetric stress state arises with a varying ratio of principal stresses over the cross section of the specimen. 
Thus, it can be assumed that  at the moment of formation of a microcrack in bri t t le  failure, a stress similar 
to the stress s tate  in the "soft interlayer" arises in a local region ahead of the crack edge even for a linear 
stress s ta te  of a cylindrical specimen. This assumption is rather approximate, the more so since the problem 
of the stress state in both the neck and "soft interlayer" which arise in extension is complex and has not 
been completely solved. In addition, using reference data on relative contraction for various metals, we had 
no data  on the geometric dimensions of specimens after fracture, which are required to calculate the stress 
state in the neck (according to N. N. Davidenkov and P. Bridgeman) and in the "soft interlayer." Therefore, 
to calculate the plasticity parameter 
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I I  -- 1 - 3D = 1 - 3(a ,  a2 -9 a2a3 + 0.10.3)/(0.1 -F 0"2 -F 0"3) 2 (13') 

we assumed equal probabilities of occurrence of all types  of stress states,  from linear to volumetric "hydro- 

stat ic" (0"1 = a2 = or3) with tensile principal s t resses over the cross section of the specimen at the moment  

of fracture.  As the calculated stress statc in fo rmula  (13), we took a certain intermediate s tate  between the 
linear a~d volumetric "hydrostat ic"  states. 

According to the solution obtained by Davidenkov  and Spiridonova [12], in the plane of minimum cross 
section of a cylindrical specimen, the stress d is t r ibut ion is given by the formulas 

Crl = 0 " t h e r m (  1 Jr" ( a2 - r2 ) / (2aR) ) ,  or2 ---- (73 = a t h e r m ( a  2 - -  r 2 ) / ( 2 a R ) ,  (14) 

where a is the radius of the smallest  cross section of  the neck, R is the curvature radius on the neck contour, 
and r is the radial coordinate. 

The  stress distribution in the "soft interlayer" of a cylindrical specimen is given by the relations [13] 

Crl = 0 . t h e r m ( 1  -9 2 ( / -  r ) / ( v ~ b ) ) ,  a2 ---- 0"3 ---- O' ther  m �9 2(1 -- r ) / ( v / 3 b ) ,  ( 1 5 )  

where l is the radius of the round cross section of the  specimen and b is the thickness of the "soft interlayer." 
2~r l 

The  stresses averaged over the cross section of the cylindrical specimen are ai = ~ air dr d~. 

0 0 
Using the last expression, we obtain the average stresses in the min imum cross section of the neck 

0"1 : 0 " the rm(1  -F a / ( 4 R ) ) ,  0"2 = 0"3 -:-- 0" therm a / ( 4 R )  ( 1 6 )  

and in the "soft interlayer" 

0.1 = 0 " t h e r m ( 1  + 2l/(3x/~b) ), 0"2 = 0"3 = 0 " t h e r m "  21/(3x/3b). (17) 

If  we assume tha t  a = l and the radius of  the  neck is approximately  equal to half the thickness of 
the "soft interlayer" or larger than it, i.e., R >~ b/2, formulas (16) and (17) give close results. A simple 

compar ison of formulas (14) and (16) and (15) and  (17) shows that  in the neck, the average stresses are 50% 
lower than  the maximum stresses, and in the "soft interlayer," they are 30% lower. 

We transform expression (13') by introducing the relative stresses n = 0"2/0"1, and m = a3/al:  

FI = 1 - 3(n -9 m + n m ) / ( 1  + n -9 rn) 2. (18) 

For cylindrical specimens in which n = m, relat ion (18) becomes H =( (1  - n ) / (1  + 2n)) 2. 

I f  we assume the stress distribution (14) or  (15), the average values of H~v over the cross section of a 
cylindrical specimen are, respectively, 

H a v =  2 R / ( 2 R  + 3a) or H a v  = bx/3/(31) - b2/(612) ln((b + 2v~l ) /b ) .  (19) 

Since determination of the values of b and  R involves difficulties, we assume tha t  at the moment  

of f racture  of a cylindrical specimen at its center  due to plastic strains, the stress 0"1 reaches the limiting 

value (2.57-3.0)ather m. For this, in relations (14) or (15), it is necessary to set R = (0.25-0.32)a and 
b = (0.58-0.74)/. Subst i tut ing these relations into relat ions (19), we obtain  Hay --- 0.14-0.18 for the first case 
and Hay = 0.23-0.27 for the second case. 

In calculations of the plasticity index for all metals  tested for rupture,  we use the plane stress s ta te  

with stresses 0"1 = a2 and 0"3 = 0. For this stress s ta te ,  the value of I I  given by expression (18), is 0.25. The  
same value of EI is obtained for the volumetric s t ress  s ta te  0.2 ~- 0.3 -- 0.250"1. 

Calculating Be from formula (13), we a s sume  tha t  the coefficient C1 is 1, and the specific isochoric 
heat  is approximately  equal to the specific isobaric heat:  Cv = Cp. Figure 1 shows the relative contraction r 
(from the reference da ta  of  [11]) versus the p las t ic i ty  index/3e for a group of metals.  

For a mathemat ica l  description of this relat ion,  we use the following theoretical equation with empirical 

coefficients [14]: r = 1/(1 + exp(Cl(1/f le  - 1/C2))) .  The  numerical values of the coefficients C1 and C2 are 
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determined by the least squares method using the standard programs. Thus, the general relation takes the 
form 

1 
r = 1 + exp [16.68(1//3e - 1/3.81)]' (20) 

and is graphically displayed in Fig. 1. 
The regression ratio (tile index of accuracy of regression of the random quantity ~ with respect to the 

random quantity fl~) is 0.91, which indicates that the relationship between fie and g, is similar to a functional 
dependence. Substituting the value ~e = 1 into Eq. (20), we obtain r -~ 0, which confirms the adopted 
assumption of the brittleness of the material when the plasticity index fie ~< 1. 

The main conclusion on the effect of the plasticity index on the brittle fracture of structural steel is 
that it depends markedly on the temperature and decreases as the latter decreases. This is most pronounced 
in second-order phase transitions with sharp peak-like changes in the bulk elastic modulus or the temperature 
coefficient of linear expansion. 
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